
    %	&h1                     ,    d dl mZ  G d de      ZdgZy)   )PretrainedConfigc                   v     e Zd ZdZdZdgZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )Zamba2Configam  
    This is the configuration class to store the configuration of a [`Zamba2Model`]. It is used to instantiate a
    Zamba2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the Zamba2 model.

    [Zyphra/Zamba2-2.7B](https://huggingface.co/Zyphra/Zamba2-2.7B)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.
    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the Zamba2 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`Zamba2Model`]
        max_position_embeddings (`int`, *optional*, defaults to 4096):
            The maximum sequence length that this model might ever be used with.
        hidden_size (`int`, *optional*, defaults to 2560):
            Dimension of the hidden representations.
        num_hidden_layers (`int`, *optional*, defaults to 54):
            Number of hidden layers in the model.
        layers_block_type (`list`, *optional*):
            List of layer types, which can be either "mamba" or "hybrid".
        mamba_d_state (`int`, *optional*, defaults to 64): shape of the state space latents.
        mamba_d_conv (`int`, *optional*, defaults to 4): Size of the convolution kernel.
        mamba_expand (`int`, *optional*, defaults to 2): Expanding factor used to determine the intermediate size.
        mamba_ngroups (`int`, *optional*, defaults to 1):
            Number of groups for the evolution matrices of mamba 2.
        time_step_min (`float`, *optional*, defaults to 0.001):
            Minimum `time_step` used to bound `dt_proj.bias`.
        time_step_max (`float`, *optional*, defaults to 0.1):
            Maximum `time_step` used to bound `dt_proj.bias`.
        time_step_floor (`float`, *optional*, defaults to 0.0001):
            Minimum clamping value of the `dt_proj.bias` layer initialization.
        time_step_limit (`tuple`, *optional*):
            Accepted range of time step values.
        n_mamba_heads (`int`, *optional*, defaults to 8):
            Number of heads for the evolution matrices of mamba 2.
        use_conv_bias (`bool`, *optional*, defaults to `True`):
            Whether or not to use bias in the convolution layer of the mixer block.
        chunk_size (`int`, *optional*, defaults to 256):
            Size of the chunks that will comprise the sequence.
        use_mem_eff_path (`bool`, *optional*, defaults to `False`):
            Whether or not to use the fused conv1d and scan in mamba2 layers.
        add_bias_linear (`bool`, *optional*, defaults to `False`):
            Flag indicating whether or not to use bias in various layers
        intermediate_size (`int`, *optional*, defaults to 4 * hidden_size):
            Dimension of the MLP representations.
        hidden_act (`str`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the MLP.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=None`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf).
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        num_mem_blocks (`int`, *optional*, defaults to 1):
            Number of unshared transformer blocks.
        use_shared_attention_adapter (`bool`, *optional*, defaults to `False`):
            If True, unshared adapters (formally the same as LoRA but used in the base model) will be added to the q, k, v projectors in the shared attention layers.
        adapter_rank (`int`, *optional*, defaults to 128):
            Rank of the adapter in the shared MLP and shared attention layers.
        use_mem_rope (`bool`, *optional*, defaults to `False`):
            If True, includes RoPE in the shared attention layers.
        rope_theta (`float`, *optional*, defaults to `10000.0`):
            The base period of the RoPE embeddings.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        num_logits_to_keep (`int` or `None`, *optional*, defaults to 1):
            Number of prompt logits to calculate during generation. If `None`, all logits will be calculated. If an
            integer value, only last `num_logits_to_keep` logits will be calculated. Default is 1 because only the
            logits of the last prompt token are needed for generation. For long sequences, the logits for the entire
            sequence may use a lot of memory so, setting `num_logits_to_keep=1` will reduce memory footprint
            significantly.
        pad_token_id (`int`, *optional*, defaults to 0):
            The id of the padding token.
        bos_token_id (`int`, *optional*, defaults to 1):
            The id of the "beginning-of-sequence" token.
        eos_token_id (`int`, *optional*, defaults to 2):
            The id of the "end-of-sequence" token.
        use_long_context (`bool`, *optional*, defaults to `False`):
            Activates the context-extended version of Zamba by modifying RoPE.
    ```python
    >>> from transformers import Zamba2Model, Zamba2Config
    >>> # Initializing a Zamba2-2.7B style configuration
    >>> configuration = Zamba2Config()
    >>> # Initializing a model from the Zamba2-2.7B style configuration
    >>> model = Zamba2Model(configuration)
    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```zamba2past_key_valuesc%                 J   t        )|   d|!|"|#d|% || _        || _        || _        |d|z  | _        n|| _        || _        || _        || _        || _	        d|z  | _
        d| j                  z  | j                  z  | _        || _        || _        |$| _        |r&|$r$d}&||&| j                  | j                  dz
  z  z  z  }|| _        || _        || _        || _        || _        |	| _        || _        t-        ||z        |z  | _        || _        || _        || _        || _        || _        |
| _        || _        || _        |$rd| _        ||}|| _         || _        | j                  | j                  z  | _!        | j                  | _"        |4dgdgdz  dgz   d	z  z   dgdz  z   dgz   dgd
z  z   dgz   dgdz  z   | _#        n|| _#        || _$        || _%        || _&        | | _'        tQ        | jF                        D '(cg c]  \  }'}(|(dk(  s|' c}(}'| _)        || _*        y c c}(}'w )N)pad_token_idbos_token_ideos_token_id         i @  mamba   hybrid   r    )+super__init__
vocab_sizemax_position_embeddingshidden_sizeintermediate_size
hidden_actnum_hidden_layersnum_attention_headsnum_mem_blocksattention_hidden_sizeattention_head_dimattention_dropoutuse_mem_ropeuse_long_context
rope_thetamamba_d_statemamba_d_convmamba_expandadd_bias_linearmamba_ngroupsn_mamba_headsintmamba_headdimuse_conv_bias
chunk_sizetime_step_limituse_shared_attention_adapteradapter_ranktime_step_mintime_step_maxtime_step_floornum_key_value_headskv_channelsnum_query_groupslayers_block_typeinitializer_rangerms_norm_eps	use_cachenum_logits_to_keep	enumeratehybrid_layer_idsuse_mem_eff_path)*selfr   r   r   r   r7   r$   r%   r&   r(   r1   r2   r3   r.   r)   r,   r-   r>   r'   r   r   r   r4   r    r   r/   r0   r!   r#   r8   r9   r:   r;   r	   r
   r   r"   kwargsaindextype	__class__s*                                            /var/www/pru.catia.catastroantioquia-mas.com/valormas/lib/python3.12/site-packages/transformers/models/zamba2/configuration_zamba2.pyr   zZamba2Config.__init__   s   P 	 	
%%%	
 		
 %'>$&$%&_D"%6D"$!2#6 ,%&_""#d&6&6"6$:R:R"R!2( 0,A#aD,C,CtG^G^abGb,c&ddJ$*((.** !;<M*$.,H)(**.+0D(&"5#6 #6 ++t/G/GG $ 8 8$	9q=H:-23)a-  * )a-	 
 * )a-  " &7D"!2(""4:CDDZDZ:[ p;5$_cgo_o p 0 !qs   <H
H)$i }  i   i 
  6   N@   r   r      gMbP?g?g-C6?Nr   T   FFNgelu    Ng        rH   F   Fi'  g{Gz?gh㈵>TrH       rH   r   F)__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferencer   __classcell__)rD   s   @rE   r   r      s    bH J#4"5  $ %*Kk1 k1    r   N)configuration_utilsr   r   __all__r   rU   rE   <module>rX      s$   . 4S1# S1l 
rU   