
    %	&h$                         d dl mZ d dlmZ ddlmZmZ  ej                  e      Z	 G d de      Z
 G d de      ZddgZy	)
   )PretrainedConfig)logging   )CONFIG_MAPPING
AutoConfigc                   B     e Zd ZdZdZdZ	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )SmolVLMVisionConfiga  
    This is the configuration class to store the configuration of a [`SmolVLMVisionModel`]. It is used to instantiate a
    SmolVLM vision encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the SigLIP checkpoint
    [google/siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384) used in SmolVLM
    [HuggingFaceTB/SmolVLM2-2.2B-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 1152):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            Number of channels in the input images.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 32):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

    Example:

    ```python
    >>> from transformers.models.smolvlm.modeling_smolvlm import SmolVLMVisionTransformer
    >>> from transformers.models.smolvlm.configuration_smolvlm import SmolVLMVisionConfig

    >>> # Initializing a SmolVLMVisionConfig with google/siglip-so400m-patch14-384 style configuration
    >>> configuration = SmolVLMVisionConfig()

    >>> # Initializing a SmolVLMVisionTransformer (with random weights) from the google/siglip-so400m-patch14-384 style configuration
    >>> model = SmolVLMVisionTransformer(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```smolvlm_visionvision_configc                     t        |   di | || _        || _        || _        || _        || _        || _        || _        |
| _	        |	| _
        || _        || _        y )N )super__init__hidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_channels
patch_size
image_sizeattention_dropoutlayer_norm_eps
hidden_actinitializer_range)selfr   r   r   r   r   r   r   r   r   r   r   kwargs	__class__s                /var/www/pru.catia.catastroantioquia-mas.com/valormas/lib/python3.12/site-packages/transformers/models/smolvlm/configuration_smolvlm.pyr   zSmolVLMVisionConfig.__init__U   sj     	"6"&!2!2#6 ($$!2,$!2    )i  i         r          gelu_pytorch_tanhgư>g        g{Gz?)__name__
__module____qualname____doc__
model_typebase_config_keyr   __classcell__r   s   @r   r	   r	      sB    1f "J%O &3 3r   r	   c                   @     e Zd ZdZdZeedZ	 	 	 	 	 	 	 d fd	Z xZ	S )SmolVLMConfiga  
    This is the configuration class to store the configuration of a [`SmolVLMModel`]. It is used to instantiate a
    SmolVLM model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the model of the SmolVLM
    [HuggingFaceTB/SmolVLM2-2.2B-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should cache the key/value pairs of the attention mechanism. Only
            relevant if `config.is_decoder=True`.
        image_token_id (`int`, *optional*, defaults to 128257):
            The id of the "image" token.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether or not to tie the word embeddings with the token embeddings.
        vision_config (`IdeficsVisionConfig` or `dict`, *optional*, defaults to `IdeficsVisionConfig`):
            Custom vision config or dict for the vision tower
        text_config (`PretrainedConfig` or `dict`, *optional*, defaults to `LlamaConfig`):
            Custom text config or dict for the text model
        scale_factor (`int`, *optional*, defaults to 2):
            The scale factor for the image encoder.
        pad_token_id (`int`, *optional*, defaults to 128002):
            The id of the padding token.

    Example:
    ```python
    >>> from transformers import SmolVLMModel, SmolVLMConfig
    >>> # Initializing configuration
    >>> configuration = SmolVLMConfig()
    >>> # Initializing a model from the configuration
    >>> model = SmolVLMModel(configuration)
    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```smolvlm)text_configr   c                    || _         || _        || _        |%t               | _        t
        j                  d       n8t        |t              rt        d	i || _        nt        |t              r|| _        t        |t              r d|v r|d   nd|d<   t        |d      d	i |}n(|&t
        j                  d       t        d   d|d      }|| _
        || _        t        	| 4  d	i |||d y )
Nz2vision_config is None, using default vision configr)   llamaz.text_config is None, using default text configgh㈵>F)rms_norm_epspad_token_idtie_word_embeddings)r4   r5   r   )image_token_id	use_cacher5   r	   r   loggerinfo
isinstancedictr   r0   scale_factorr   r   )
r   r7   r6   r5   r   r0   r<   r4   r   r   s
            r   r   zSmolVLMConfig.__init__   s     -"#6  !4!6DKKLMt,!4!E}!ED':;!.Dk4(EQU`E`L(AfmK%(\)BCRkRK KKHI(1!)$)K '(f6fRefr   )Ti FNNr   i )
r%   r&   r'   r(   r)   r   r	   sub_configsr   r+   r,   s   @r   r.   r.   s   s>    #J J",?RSK !%g %gr   r.   N)configuration_utilsr   utilsr   autor   r   
get_loggerr%   r8   r	   r.   __all__r   r   r   <module>rC      sR   , 4  - 
		H	%R3* R3jNg$ Ngb !/
2r   