
    %	&h                         d Z ddlmZmZmZ ddlmZ ddlmZ ddl	m
Z
mZmZmZ ddlmZmZ  G d d	e
d
      Z G d ded
      Z G d de      ZdgZy)z)
Image/Text processor class for SigLIP2.
    )ListOptionalUnion   )BatchFeature)
ImageInput)ImagesKwargsProcessingKwargsProcessorMixinUnpack)PreTokenizedInput	TextInputc                   .    e Zd ZU ee   ed<   ee   ed<   y)Siglip2ImagesKwargsmax_num_patches
patch_sizeN)__name__
__module____qualname__r   int__annotations__     /var/www/pru.catia.catastroantioquia-mas.com/valormas/lib/python3.12/site-packages/transformers/models/siglip2/processing_siglip2.pyr   r      s    c]"r   r   F)totalc                   0    e Zd ZU eed<   dddddddd	Zy
)Siglip2ProcessorKwargsimages_kwargs
max_lengthT@   )padding
truncationr         )r   r   )text_kwargsr   N)r   r   r   r   r   	_defaultsr   r   r   r   r       s,    && $
  #

Ir   r   c                        e Zd ZdZddgZdZdZ fdZ	 	 	 	 ddee	e
ee
   eee
      f      dee	ed	ee   ed	   f      d
ee   defdZd Zd Zed        Z xZS )Siglip2Processora!  
    Constructs a Siglip2 processor which wraps a Siglip2 image processor and a Gemma tokenizer into a single processor.

    [`Siglip2Processor`] offers all the functionalities of [`Siglip2ImageProcessor`] and [`GemmaTokenizerFast`]. See the
    [`~Siglip2Processor.__call__`] and [`~Siglip2Processor.decode`] for more information.

    Args:
        image_processor ([`Siglip2ImageProcessor`]):
            The image processor is a required input.
        tokenizer ([`GemmaTokenizerFast`]):
            The tokenizer is a required input.
    image_processor	tokenizerAutoImageProcessorAutoTokenizerc                 &    t         |   ||       y N)super__init__)selfr)   r*   	__class__s      r   r0   zSiglip2Processor.__init__C   s    )4r   imagestextr   kwargsreturnc                 L    | j                   t        fd| j                  j                  i|}||t	        d      | | j                  |fi |d   }| | j
                  |fi |d   }||j                         |S |S |d   d   }	t        t        di |	      S )	a  
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to GemmaTokenizerFast's [`~GemmaTokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the image(s), this method forwards the `images` argument to
        Siglip2ImageProcessor's [`~Siglip2ImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
        of the above two methods for more information.

        Args:
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `max_length`):
                Select a strategy to pad the returned sequences (according to the model's padding side and padding
                index) among:
                - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
                  acceptable input length for the model if that argument is not provided.
                - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
                  sequence if provided).
                - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
                  lengths).
            max_length (`int`, *optional*, defaults to 64):
                Maximum length of the returned list and optionally padding length (see above).
            truncation (`bool`, *optional*, defaults to `True`):
                Activates truncation to cut input sequences longer than `max_length` to `max_length`.
            return_tensors (`str` or [`~utils.TensorType`], *optional*, defaults to `'pt'`):
                If set, will return tensors of a particular framework. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
            - **pixel_attention_mask** -- Attention mask for the pixel values. Returned when `images` is not `None`.
            - **spatial_shapes** -- The number of horizontal and vertical patches per image.
              Returned when `images` is not `None`.
        tokenizer_init_kwargsz?You have to specify either text or images. Both cannot be none.r%   r   common_kwargsreturn_tensors)datatensor_typer   )	_merge_kwargsr   r*   init_kwargs
ValueErrorr)   updater   dict)
r1   r3   r4   audiovideosr5   output_kwargsencodingimage_featuresr:   s
             r   __call__zSiglip2Processor.__call__F   s    p +**"
"&.."<"<
 
 <FN^__%t~~dKmM.JKH1T11&[M/<Z[N 2OON+OO*?;<LMNT%;N%;XXr   c                 :     | j                   j                  |i |S )z
        This method forwards all its arguments to Siglip2Tokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        )r*   decoder1   argsr5   s      r   rI   zSiglip2Processor.decode   s     
 %t~~$$d5f55r   c                 :     | j                   j                  |i |S )z
        This method forwards all its arguments to Siglip2Tokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        )r*   batch_decoderJ   s      r   rM   zSiglip2Processor.batch_decode   s     
 +t~~**D;F;;r   c                     | j                   j                  }| j                  j                  }t        t        j                  ||z               S r.   )r*   model_input_namesr)   listrA   fromkeys)r1   tokenizer_input_namesimage_processor_input_namess      r   rO   z"Siglip2Processor.model_input_names   s?     $ @ @&*&:&:&L&L#DMM"7:U"UVWWr   )NNNN)r   r   r   __doc__
attributesimage_processor_classtokenizer_classr0   r   r   r   r   r   r   r   r   rG   rI   rM   propertyrO   __classcell__)r2   s   @r   r(   r(   0   s     $[1J0%O5
 Y]lpNYz4
+;T$zBR=SSTUNY uY(;T)_dSfNgghiNY /0NY 
NY`6< X Xr   r(   N)rT   typingr   r   r   feature_extraction_utilsr   image_utilsr   processing_utilsr	   r
   r   r   tokenization_utils_baser   r   r   r   r(   __all__r   r   r   <module>r`      sY    ) ( 4 % V V C,e 
-U  xX~ xXv 
r   