
    %	&hB                         d dl mZmZmZ d dlmZmZmZmZ d dl	m
Z
mZ ddlmZ ddlmZmZ  G d ded	
      Z G d ded	
      ZdZ G d de      ZdgZy)    )ListOptionalUnion)ImagesKwargsProcessingKwargsProcessorMixinUnpack)PreTokenizedInput	TextInput   )BatchFeature)
ImageInputmake_flat_list_of_imagesc                   .    e Zd ZU ee   ed<   ee   ed<   y)Llama4ImagesKwargsmax_patchesresize_to_max_canvasN)__name__
__module____qualname__r   int__annotations__bool     /var/www/pru.catia.catastroantioquia-mas.com/valormas/lib/python3.12/site-packages/transformers/models/llama4/processing_llama4.pyr   r   "   s    #"4.(r   r   F)totalc                   $    e Zd ZU eed<   dddiiZy)Llama4ProcessorKwargsimages_kwargstext_kwargspadding_sideleftN)r   r   r   r   r   	_defaultsr   r   r   r   r   '   s    %%F
Ir   r   a>  {{- bos_token }}
{%- if custom_tools is defined %}
    {%- set tools = custom_tools %}
{%- endif %}
{%- if not tools_in_user_message is defined %}
    {%- set tools_in_user_message = true %}
{%- endif %}
{%- if not date_string is defined %}
    {%- if strftime_now is defined %}
        {%- set date_string = strftime_now("%d %b %Y") %}
    {%- else %}
        {%- set date_string = "26 Jul 2024" %}
    {%- endif %}
{%- endif %}
{%- if not tools is defined %}
    {%- set tools = none %}
{%- endif %}

{#- This block extracts the system message, so we can slot it into the right place. #}
{%- if messages[0]['role'] == 'system' %}    
    {%- if messages[0]['content'] is string %}
        {%- set system_message = messages[0]['content']|trim %}
    {%- else %}
        {#- FIXME: The processor requires an array, always. #}
        {%- set system_message = messages[0]['content'][0]['text']|trim %}
    {%- endif %}
    {%- set messages = messages[1:] %}
    {%- set user_supplied_system_message = true %}
{%- else %}
    {%- set system_message = "" %}
    {%- set user_supplied_system_message = false %}
{%- endif %}

{#- System message if the user supplied one #}
{%- if user_supplied_system_message %}
    {{- "<|header_start|>system<|header_end|>

" }}
    {%- if tools is not none %}
        {{- "Environment: ipython
" }}
    {%- endif %}
    {%- if tools is not none and not tools_in_user_message %}
        {{- "You have access to the following functions. To call a function, please respond with JSON for a function call." }}
        {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
        {{- "Do not use variables.

" }}
        {%- for t in tools %}
            {{- t | tojson(indent=4) }}
            {{- "

" }}
        {%- endfor %}
    {%- endif %}
    {{- system_message }}
    {{- "<|eot|>" }}
{%- endif %}

{#- Custom tools are passed in a user message with some extra guidance #}
{%- if tools_in_user_message and not tools is none %}
    {#- Extract the first user message so we can plug it in here #}
    {%- if messages | length != 0 %}
        {%- set first_user_message = messages[0]['content']|trim %}
        {%- set messages = messages[1:] %}
    {%- else %}
        {{- raise_exception("Cannot put tools in the first user message when there's no first user message!") }}
{%- endif %}
    {{- '<|header_start|>user<|header_end|>

' -}}
    {{- "Given the following functions, please respond with a JSON for a function call " }}
    {{- "with its proper arguments that best answers the given prompt.

" }}
    {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
    {{- "Do not use variables.

" }}
    {%- for t in tools %}
        {{- t | tojson(indent=4) }}
        {{- "

" }}
    {%- endfor %}
    {{- first_user_message + "<|eot|>"}}
{%- endif %}

{%- for message in messages %}
    {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}
    {{- '<|header_start|>' + message['role'] + '<|header_end|>

' }}
        {%- if message['content'] is string %}
            {{- message['content'] }}
        {%- else %}
            {%- for content in message['content'] %}
                {%- if content['type'] == 'image' %}
                    {{- '<|image|>' }}
                {%- elif content['type'] == 'text' %}
                    {{- content['text'] }}
                {%- endif %}
            {%- endfor %}
        {%- endif %}
        {{- "<|eot|>" }}
    {%- elif 'tool_calls' in message and message.tool_calls|length > 0 %}
       {{- '<|header_start|>assistant<|header_end|>

' -}}
       {{- '<|python_start|>' }}
        {%- if message['content'] is string %}
            {{- message['content'] }}
        {%- else %}
            {%- for content in message['content'] %}
                {%- if content['type'] == 'image' %}
                    {{- '<|image|>' }}
                {%- elif content['type'] == 'text' %}
                    {{- content['text'] }}
                {%- endif %}
            {%- endfor %}
        {%- endif %}
       {{- '<|python_end|>' }}
        {%- for tool_call in message.tool_calls %}
           {{- '{"name": "' + tool_call.function.name + '", ' }}
           {{- '"parameters": ' }}
           {{- tool_call.function.arguments | tojson }}
           {{- "}" }}
        {%- endfor %}
       {{- "<|eot|>" }}
    {%- elif message.role == "tool" or message.role == "ipython" %}
        {{- "<|header_start|>ipython<|header_end|>

" }}
        {%- if message.content is mapping or message.content is iterable %}
            {{- message.content | tojson }}
        {%- else %}
            {{- message.content }}
        {%- endif %}
        {{- "<|eot|>" }}
    {%- endif %}
{%- endfor %}
{%- if add_generation_prompt %}
    {{- '<|header_start|>assistant<|header_end|>

' }}
{%- endif %}
c                        e Zd ZdZddgZg dZdZdZdddd	d
d
dddddefde	de
f fdZd Z	 	 	 	 ddee   deeeeee   ee   f      dee   defdZd Zd Zed        Z xZS )Llama4Processora  
    Constructs a Llama4 processor which wraps a [`AutoImageProcessor`] and
    [`PretrainedTokenizerFast`] tokenizer into a single processor that inherits both the image processor and
    tokenizer functionalities. See the [`~Llama4Processor.__call__`] and [`~Llama4Processor.decode`] for more information.
    Args:
        image_processor ([`AutoImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`PreTrainedTokenizer`, `PreTrainedTokenizerFast`], *optional*):
            The tokenizer is a required input.
        patch_size (`int`, *optional*, defaults to 28):
            The size of image patches for tokenization.
        img_size (`int`, *optional*, defaults to 364):
            The size of the image to be tokenized. This should correspond to the size given to the image processor.
        image_token (`str`, *optional*, defaults to `"<|image|>"`):
            The token to be used to represent an image in the text.
        downsample_factor (`int`, *optional*, defaults to 1):
            The factor by which to scale the patch size.
        start_of_img_token (`str`, *optional*, defaults to `"<|START_OF_IMG|>"`):
            The token to be used to represent the start of an image in the text.
        end_of_img_token (`str`, *optional*, defaults to `"<|END_OF_IMG|>"`):
            The token to be used to represent the end of an image in the text.
        img_patch_token (`str`, *optional*, defaults to `"<|IMG_PATCH|>"`):
            The token to be used to represent an image patch in the text.
        img_line_break_token (`str`, *optional*, defaults to `"<|IMG_LINE_BREAK|>"`):
            The token to be used to represent a line break in the text.
        tile_token (`str`, *optional*, defaults to `"TILE"`):
            The token to be used to represent an image patch in the text.
        tile_global_token (`str`, *optional*, defaults to `"TILE_GLOBAL"`):
            The token to be used to represent the cover image in the text.
        chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
            in a chat into a tokenizable string.
    image_processor	tokenizer)chat_templateimage_token
patch_sizeimg_sizedownsample_factorstart_of_img_tokenend_of_img_tokenimg_patch_tokenimg_line_break_token
tile_tokentile_global_tokenAutoImageProcessorAutoTokenizerN   g      ?	<|image|><|image_start|><|image_end|>	<|patch|><|tile_x_separator|><|tile_y_separator|>r+   pixel_shuffle_ratioc                     t         |   |||       t        t        d|dz  z              | _        || _        || _        || _        || _        || _	        |	| _
        |
| _        || _        y )N)r)   g      ?   )super__init__r   rounddownsample_ratior+   fake_image_tokenr*   r.   r/   r0   r2   r3   )selfr'   r(   r+   r=   rD   r*   start_of_image_tokenend_of_image_tokenpatch_tokentile_x_separator_tokentile_y_separator_tokenr)   kwargs	__class__s                 r   rA   zLlama4Processor.__init__f   st      	)=Q #E#1Da1G*H$I J$ 0&"6 2*0!7r   c                     d}|\  }}||z  dkD  r;t        |      D ]-  }t        |      D ]  }|d|z  z  }||dz
  k  s|dz  } |dz  }/ |dz  }|d|z  z  }|dz  }|S )z
        Create a structured string representation of image tokens

        Args:
           num_patches: Number of patches in the image

        Returns:
            String with appropriate image tokens
        r8      r:   r;   r<   r7   r9   )range)rE   aspect_rationum_patches_per_chunk
img_stringratio_hratio_wyyxxs           r   _prompt_split_imagez#Llama4Processor._prompt_split_image   s     '
'Wq Gn 5. =B+0E"EEJGaK'"&<<
=
 44
5 	k!
k$999
o%
r   imagestextrK   returnc                 N    |t        d        j                  t        fd j                  j                  i|}t        |t        t        f      s|g}i }|t        |      }  j                  dd|i|d   }|d   d   j                  dd \  }}	t        | j                  z  |	 j                  z  z   j                  z        }
|j                  d	      }t         fd
|D              }|t!        |      k7  rt        d| dt!        |       d      d}g }|D ]  }|j#                   j$                        }|dk(  r|j'                  |       5|j)                   j$                        }g }t+        |      D ]G  \  }}|j'                  |       ||k  s j-                  ||   |
      }|dz  }|j'                  |       I |j'                  dj/                  |              |t!        |      k7  rt        d      |}  j                  |fi |d   }t1        i ||      S )au  
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] to encode the text.
        To prepare the vision inputs, this method forwards the `images` and `kwargs` arguments to
        Llama4ImageProcessor's [`~Llama4ImageProcessor.__call__`] if `images` is not `None`.

        Args:
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:
                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
        NzYou have to specify text.tokenizer_init_kwargsrX   r    pixel_valuesr   aspect_ratiosc              3   T   K   | ]  }|j                  j                         ! y wN)countrD   ).0promptrE   s     r   	<genexpr>z+Llama4Processor.__call__.<locals>.<genexpr>   s      $\VV\\$2G2G%H$\s   %(zFound z) placeholders across the batch, but have z flattened images.rN    zONumber of image placeholders in the prompt does not match the number of images.r!   )datar   )
ValueError_merge_kwargsr   r(   init_kwargs
isinstancelisttupler   r'   shaper   r+   rC   popsumlenrb   rD   appendsplit	enumeraterW   joinr   )rE   rX   rY   audiovideosrK   output_kwargsimage_inputsimage_heightimage_widthrQ   r_   total_placeholdersimage_indexprocessed_textrd   placeholder_countprompt_splits
new_promptlocal_image_index
split_parttokens_for_this_imagetext_inputss   `                      r   __call__zLlama4Processor.__call__   sx   L <899***!
"&.."<"<
 
 $u.6D -f5F/4//`v`A_`L(4^(DQ(G(M(Mbc(R%L+$'0[DOO5STX\XmXmm%! ),,_=M!$$\W[$\!\!S[0 /0 1  #F},>@ 
 KN ;$*LL1F1F$G!$)"))&1 &T-B-B C
5>}5M A1%z%%j1(+<<040H0H)+68M1- $q("))*?@A %%bggj&9:!;$ c&k) !rss!D$dnnTJ]=-IJ!@K!@<!@AAr   c                 :     | j                   j                  |i |S )z
        This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        )r(   batch_decoderE   argsrK   s      r   r   zLlama4Processor.batch_decode   s     
 +t~~**D;F;;r   c                 :     | j                   j                  |i |S )z
        This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        )r(   decoder   s      r   r   zLlama4Processor.decode  s     
 %t~~$$d5f55r   c                     | j                   j                  }| j                  j                  }t        |      t        |      z   S ra   )r(   model_input_namesr'   rl   )rE   tokenizer_input_namesimage_processor_input_namess      r   r   z!Llama4Processor.model_input_names  s;     $ @ @&*&:&:&L&L#)*T2M-NNNr   )NNNN)r   r   r   __doc__
attributesvalid_kwargsimage_processor_classtokenizer_classr)   r   floatrA   rW   r   r   r   r   r
   r   r	   r   r   r   r   r   propertyr   __classcell__)rL   s   @r   r&   r&   3   s    B $[1JL 1%O %($.*55#8 	8
 #8:8 (,hl_B$_B uY(94	?DQbLccde_B ./_B 
_BB<6 O Or   r&   N)typingr   r   r   transformers.processing_utilsr   r   r   r	   $transformers.tokenization_utils_baser
   r   image_processing_utilsr   image_utilsr   r   r   r   r)   r&   __all__r   r   r   <module>r      sf   " ) (  N 2)U )
,E  ]P]On ]O@ 
r   