
    %	&h                     ,    d dl mZ  G d de      ZdgZy)   )PretrainedConfigc                        e Zd ZdZdZdgZddddddddZdgdgfd	d
gd	gfd	gd	gfdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZ	S )HeliumConfiga  
    This is the configuration class to store the configuration of a [`HeliumModel`]. It is used to instantiate an Helium
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the Helium 2b model.
    e.g. [kyutai/helium-2b](https://huggingface.co/kyutai/helium-2b)
    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.
    Args:
        vocab_size (`int`, *optional*, defaults to 48000):
            Vocabulary size of the Helium model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`HeliumModel`]
        hidden_size (`int`, *optional*, defaults to 2560):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 7040):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 24):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 20):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*, defaults to 20):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
            `num_attention_heads`.
        head_dim (`int`, *optional*, defaults to 128):
            The attention head dimension.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The legacy activation function. It is overwritten by the `hidden_activation`.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 4096):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-08):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 100000.0):
            The base period of the RoPE embeddings.
        pad_token_id (`int`, *optional*, defaults to 3):
            Padding token id.
        eos_token_id (`int` | `list`, *optional*, defaults to 2):
            End of stream token id.
        bos_token_id (`int`, *optional*, defaults to 1):
            Beginning of stream token id.
        attention_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        mlp_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
    ```python
    >>> from transformers import HeliumModel, HeliumConfig
    >>> # Initializing a Helium 2b style configuration
    >>> configuration = HeliumConfig()
    >>> # Initializing a model from the Helium 2b style configuration
    >>> model = HeliumModel(configuration)
    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```heliumpast_key_valuescolwiserowwise)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.mlp.gate_projzlayers.*.mlp.up_projzlayers.*.mlp.down_proj	input_idsinputs_embedshidden_statesattention_mask)embed_tokenslayersnormc                    || _         |
| _        || _        || _        || _        || _        || _        || _        || _        || _	        || _
        || _        || _        || _        |	| _        || _        t!        | D  d||||d| y )N)pad_token_idbos_token_ideos_token_idtie_word_embeddings )
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_key_value_headshead_dim
hidden_actinitializer_rangerms_norm_eps	use_cache
rope_thetaattention_biasattention_dropoutmlp_biassuper__init__)selfr   r   r   r   r   r   r   r   r%   r   r    r!   r"   r   r#   r   r   r   r$   r&   kwargs	__class__s                         /var/www/pru.catia.catastroantioquia-mas.com/valormas/lib/python3.12/site-packages/transformers/models/helium/configuration_helium.pyr(   zHeliumConfig.__init__h   s    0 %'>$&!2!2#6 #6  $!2("$,!2  	
%%% 3		

 	
    )i  i 
  i        r/      silug        i   g{Gz?g:0yE>TFg     j@r         FF)
__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferencebase_model_tp_planbase_model_pp_planr(   __classcell__)r+   s   @r,   r   r      s    @D J#4"5%.%.%.%."+ )"+ &(9:#%568IJ!"_$56  $!+/
 /
r-   r   N)configuration_utilsr   r   __all__r   r-   r,   <module>r?      s$   " 4C
# C
L 
r-   