
    %	&hC                         d dl mZmZmZmZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ  e
j                  e      Z G d d	e      Z G d
 de      Zdd	gZy)    )AnyDictOptionalUnion   )PretrainedConfig)rope_config_validation)logging   )SiglipVisionConfigc                        e Zd ZdZdZdgZddddddddZdgdgfd	d
gd	gfd	gd	gfdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZ	S )Gemma3TextConfiga!  
    This is the configuration class to store the configuration of a [`Gemma3TextModel`]. It is used to instantiate an Gemma3Text
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the Gemma3Text-7B.
    e.g. [google/gemma3_text-7b](https://huggingface.co/google/gemma3_text-7b)
    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.
    Args:
        vocab_size (`int`, *optional*, defaults to 262208):
            Vocabulary size of the Gemma3Text model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`Gemma3TextModel`]
        hidden_size (`int`, *optional*, defaults to 2304):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 9216):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 26):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*, defaults to 4):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
            `num_attention_heads`.
        head_dim (`int`, *optional*, defaults to 256):
            The attention head dimension.
        hidden_activation (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
            The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"`
            if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function.
        max_position_embeddings (`int`, *optional*, defaults to 131072):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*, defaults to 0):
            Padding token id.
        eos_token_id (`int`, *optional*, defaults to 1):
            End of stream token id.
        bos_token_id (`int`, *optional*, defaults to 2):
            Beginning of stream token id.
        tie_word_embeddings (`bool`, *optional*, defaults to `True`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 1000000.0):
            The base period of the RoPE embeddings.
        attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        query_pre_attn_scalar (`float`, *optional*, defaults to 256):
            Scaling factor used on the attention scores
        sliding_window (`int`, *optional*, defaults to 4096): in Gemma3Text, every other layer uses sliding window attention. This is the
            size of the sliding window.
        final_logit_softcapping (`float`, *optional*):
            Scaling factor when applying tanh softcapping on the logits.
        attn_logit_softcapping (`float`, *optional*):
            Scaling factor when applying tanh softcapping on the attention scores.
        cache_implementation (`str`, *optional*, defaults to `"hybrid"`): the cache type to be used with `generate`.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings used in gloabl attention. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'llama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
        rope_local_base_freq (float, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings for local attention.
        sliding_window_pattern (`int`, *optional*, defaults to 6):
            Pattern for the sliding window attention.

    ```python
    >>> from transformers import Gemma3TextModel, Gemma3TextConfig
    >>> # Initializing a Gemma3Text gemma3_text-7b style configuration
    >>> configuration = Gemma3TextConfig()
    >>> # Initializing a model from the gemma3_text-7b style configuration
    >>> model = Gemma3TextModel(configuration)
    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
        rope_local_base_freq (float, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings for local attention.
        sliding_window_pattern (`int`, *optional*, defaults to 6):
            Pattern for the sliding window attention.
    gemma3_textpast_key_valuescolwiserowwise)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.mlp.gate_projzlayers.*.mlp.up_projzlayers.*.mlp.down_proj	input_idsinputs_embedshidden_statesattention_mask)embed_tokenslayersnormc                    t        |   d||||d| || _        |	| _        || _        || _        || _        || _        || _        || _	        |
| _
        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        t3        |        y )N)pad_token_idbos_token_ideos_token_idtie_word_embeddings )super__init__
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headshead_dimnum_key_value_headsinitializer_rangerms_norm_eps	use_cache
rope_thetaattention_biasattention_dropouthidden_activationquery_pre_attn_scalarsliding_windowfinal_logit_softcappingattn_logit_softcappingcache_implementationrope_local_base_freqsliding_window_patternrope_scalingr	   )selfr"   r$   r%   r&   r'   r)   r(   r0   r#   r*   r+   r,   r   r   r   r   r-   r.   r/   r1   r2   r3   r4   r5   r8   r6   r7   kwargs	__class__s                                /var/www/pru.catia.catastroantioquia-mas.com/valormas/lib/python3.12/site-packages/transformers/models/gemma3/configuration_gemma3.pyr!   zGemma3TextConfig.__init__   s    > 	 	
%%% 3		

 	
 %'>$&!2!2#6  #6 !2("$,!2!2%:",'>$&<#$8!$8!&<#(t$    )i@  i 	  i $              gelu_pytorch_tanhi   {Gz?gư>Tr      r   Tg    .AFg        rA   i   NNhybridNg     @   )
__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferencebase_model_tp_planbase_model_pp_planr!   __classcell__r;   s   @r<   r   r   !   s    wr J#4"5%.%.%.%."+ )"+ &(9:#%568IJ!"_$56 - ' ! $#%% 9?% ?%r=   r   c                        e Zd ZdZdZeedZ	 	 	 	 	 	 	 ddee	ee
eef   f      dee	ee
eef   f      dededed	ed
ef fdZ xZS )Gemma3Configa  
    This is the configuration class to store the configuration of a [`Gemma3ForConditionalGeneration`]. It is used to instantiate an
    Gemma3ForConditionalGeneration according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the PaliGemma-2B.

    e.g. [google/gemma-3-4b](https://huggingface.co/google/gemma-3-4b)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`Union[Gemma3TextConfig, dict]`, *optional*):
            The config object of the text backbone.
        vision_config (`Union[AutoConfig, dict]`,  *optional*):
            Custom vision config or dict.
        mm_tokens_per_image (`int`, *optional*, defaults to 256):
            The number of tokens per image embedding.
        boi_token_index (`int`, *optional*, defaults to 255999):
            The begin-of-image token index to wrap the image prompt.
        eoi_token_index (`int`, *optional*, defaults to 256000):
            The end-of-image token index to wrap the image prompt.
        image_token_index (`int`, *optional*, defaults to 262144):
            The image token index to encode the image prompt.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.


    Example:

    ```python
    >>> from transformers import Gemma3ForConditionalGeneration, Gemma3Config, SiglipVisionConfig, Gemma3TextConfig

    >>> # Initializing a Siglip-like vision config
    >>> vision_config = SiglipVisionConfig()

    >>> # Initializing a Gemma3 Text config
    >>> text_config = Gemma3TextConfig()

    >>> # Initializing a Gemma3 gemma-3-4b style configuration
    >>> configuration = Gemma3Config(vision_config, text_config)

    >>> # Initializing a model from the gemma-3-4b style configuration
    >>> model = Gemma3TextConfig(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```gemma3)text_configvision_configrT   rU   mm_tokens_per_imageboi_token_indexeoi_token_indeximage_token_indexr*   c                 z   | t               }t        j                  d       nt        |t              rt        di |}t        |t              rt        di |}n!|t               }t        j                  d       || _        || _        || _        || _	        || _
        || _        || _        t        	| 8  di | y )Nz@text_config is None, using default Gemma3TextConfig text config.zFvision_config is None, using default SiglipVisionConfig vision config.r   )r   loggerinfo
isinstancedictr   rT   rU   rV   rW   rX   rY   r*   r    r!   )
r9   rT   rU   rV   rW   rX   rY   r*   r:   r;   s
            r<   r!   zGemma3Config.__init__%  s     *,KKKZ[T**9[9KmT*.??M".0MKK`a&*#6 ..!2!2"6"r=   )NNrA   i i  i   rC   )rG   rH   rI   rJ   rK   r   r   sub_configsr   r   r   strr   intfloatr!   rO   rP   s   @r<   rR   rR      s    .` J'+K JNMQ#&&&!(#'#e$4d38n$DEF#  &8$sCx.&H IJ# !	#
 # # # !# #r=   rR   N)typingr   r   r   r   configuration_utilsr   modeling_rope_utilsr	   utilsr
   siglipr   
get_loggerrG   r[   r   rR   __all__r   r=   r<   <module>rj      sZ   , . - 3 9  ' 
		H	%J%' J%ZV## V#r -
.r=   