
    %	&h>                     ~    d dl mZmZmZmZ ddlmZ ddlmZ  G d de      Z	 G d de      Z
 G d	 d
e      Zg dZy)    )DictListOptionalUnion   )PretrainedConfig)rope_config_validationc                        e Zd ZdZdZdZddddddddg d	d
dgdddfdededededededededee   dedee   dedede	f fdZ
 xZS )Emu3VQVAEConfiga
  
    This is the configuration class to store the configuration of a [`Emu3VQVAE`]. It is used to instantiate an VQ-VAE
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a configuration to the VQ model presented in Emu3 paper.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.
    Args:
        codebook_size (`int`, *optional*, defaults to 32768):
            Codebook size of the VQ model.
        embed_dim (`int`, *optional*, defaults to 4):
            Dimension of the quantized vector in codebook.
        latent_channels (`int`, *optional*, defaults to 4):
            Dimension of the output channel of encoder and the input channel of decoder
        double_latent (`bool`, *optional*, defaults to `False`):
            Whether double the output dim of the encoder.
        in_channels (`int`, *optional*, defaults to 3):
            Input channel of encoder.
        out_channels (`int`, *optional*, defaults to 3):
            Output channel of decoder.
        temporal_downsample_factor (`int`, *optional*, defaults to 4):
            Temporal downsample factor.
        base_channels (`int`, *optional*, defaults to 256):
            Basic channel number of the intermediate blocks.
        channel_multiplier (`List[int]`, *optional*, defaults to `[1, 2, 2, 4]`):
            Channel scaling factor of the intermediate blocks.
        num_res_blocks (`int`, *optional*, defaults to 2):
            Residual block number in each stage.
        attn_resolutions (`List[int]`, *optional*, defaults to `[3]`):
            Stage indices to apply attention.
        hidden_size (`int`, *optional*, defaults to 1024):
            Dimension of the hidden representations in the attention layer.
        num_attention_heads (`int`, *optional*, defaults to 1):
            Number of attention heads for each attention layer.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.

    ```python
    >>> from transformers import Emu3VQVAE, Emu3VQVAEConfig

    >>> # Initializing a video VQ model of Emu3 configuration
    >>> configuration = Emu3VQVAEConfig()

    >>> # Initializing a model from the Emu3 VQ model style configuration
    >>> model = Emu3VQVAE(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
emu3_vqgan	vq_configi      Fr      )      r   r   r   i   r   g        codebook_size	embed_dimlatent_channelsdouble_latentin_channelsout_channelstemporal_downsample_factorbase_channelschannel_multipliernum_res_blocksattn_resolutionshidden_sizenum_attention_headsattention_dropoutc                     t        |   di | || _        || _        || _        || _        || _        || _        || _        || _	        |	| _
        |
| _        || _        || _        || _        || _        y N )super__init__r   r   r   r   r   r   r   r   r   r   r   r   r   r   )selfr   r   r   r   r   r   r   r   r   r   r   r   r   r   kwargs	__class__s                   /var/www/pru.catia.catastroantioquia-mas.com/valormas/lib/python3.12/site-packages/transformers/models/emu3/configuration_emu3.pyr$   zEmu3VQVAEConfig.__init__M   s    $ 	"6"*".*&(*D'*"4, 0&#6 !2    )__name__
__module____qualname____doc__
model_typebase_config_keyintboolr   floatr$   __classcell__r'   s   @r(   r   r      s    0d J!O # #*+ (4'(c#$#&!3!3 !3 	!3
 !3 !3 !3 %(!3 !3 !I!3 !3 s)!3 !3 !!3 !!3 !3r)   r   c            %            e Zd ZdZdZdZdgZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ddedededed	ed
ee   de	dede
dededededede
dede
de
f$ fdZ xZS )Emu3TextConfiga  
    This is the configuration class to store the configuration of a [`Emu3TextModel`]. It is used to instantiate a
    emu3 model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the
    [Emu3-community/Emu3-Chat-hf](https://huggingface.co/Emu3-community/Emu3-Chat-hf).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 184622):
            Vocabulary size of the Emu3 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`Emu3Model`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 14336):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*, defaults to 8):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
            `num_attention_heads`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 9216):
            The maximum sequence length that this model might ever be used with. Emu supports up to 9216 tokens,
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*, defaults to 151643):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 151849):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 151850):
            End of stream token id.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 1000000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'llama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
        mlp_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
        attention_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.


    ```python
    >>> from transformers import Emu3Model, Emu3Config

    >>> # Initializing a Emu3-community/Emu3-Chat-hf style configuration
    >>> configuration = Emu3Config()

    >>> # Initializing a model from the Emu3-community/Emu3-Chat-hf style configuration
    >>> model = Emu3Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```emu3_text_modeltext_configpast_key_values
vocab_sizer   intermediate_sizenum_hidden_layersr   num_key_value_heads
hidden_actmax_position_embeddingsrms_norm_eps	use_cachepad_token_idbos_token_ideos_token_idtie_word_embeddings
rope_thetarope_scalingr   initializer_rangec                 $   || _         || _        || _        || _        || _        || _        || _        || _        |	| _        |
| _	        || _
        || _        || _        || _        || _        t        |        || _        t#        | H  d||||d| y )N)rB   rC   rD   rE   r"   )r:   r?   r   r;   r<   r   r=   r>   r@   rA   rF   rG   mlp_biasattention_biasrH   r	   r   r#   r$   )r%   r:   r   r;   r<   r   r=   r>   r?   r@   rA   rB   rC   rD   rE   rF   rG   rJ   rK   r   rH   r&   r'   s                         r(   r$   zEmu3TextConfig.__init__   s    0 %'>$&!2!2#6 #6 $("$( ,!2t$!2 	
%%% 3		

 	
r)   )i. i   i 8      rL      silui $  gh㈵>Ti[P i)Q i*Q Fg    .ANFFg?g{Gz?)r*   r+   r,   r-   r.   r/   keys_to_ignore_at_inferencer0   r   strr2   r1   r$   r3   r4   s   @r(   r6   r6   q   s   kZ #J#O#4"5 !!&!##%-. '+""""$)%!%#&#'+1
1
 1
 	1

 1
 !1
 &c]1
 1
 "%1
 1
 1
 1
 1
 1
 "1
  !1
" #1
( !)1
* !+1
 1
r)   r6   c            	       j     e Zd ZdZdZdgZeedZ	 	 	 d	de	e
ef   de	e
ef   de
eef   f fdZ xZS )

Emu3Configa!  
    This is the configuration class to store the configuration of a [`Emu3Model`]. It is used to instantiate a
    emu3 model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the
    [Emu3-community/Emu3-Chat-hf](https://huggingface.co/Emu3-community/Emu3-Chat-hf).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vq_config (`Union[Dict, Emu3VQVAEConfig]`, *optional*):
            Emu3VQVAEConfig instance containing the configuration for the VQ-VAE model.
        text_config (`Union[Dict, Emu3TextConfig]``, *optional*):
            Emu3TextConfig instance containing the configuration for the language model.
        vocabulary_map (`dict`, *optional*):
            A dictionary containing the vocabulary map from the tokenizer. Used to obtain tokens from the image inputs.
    emu3r9   )r8   r   r   r8   vocabulary_mapc                     |t               }nt        |t              rt        di |}|t               }nt        |t              rt        di |}|| _        || _        || _        t        |    di | y r!   )	r   
isinstancedictr6   r   r8   rT   r#   r$   )r%   r   r8   rT   r&   r'   s        r(   r$   zEmu3Config.__init__/  sv     ')I	4('4)4I(*KT*(7;7K"&,"6"r)   )NNN)r*   r+   r,   r-   r.   rO   r6   r   sub_configsr   r   r0   r$   r3   r4   s   @r(   rR   rR     so    & J#4"5"0OK 3737)-	#./# 4/0# S#X	# #r)   rR   )rR   r6   r   N)typingr   r   r   r   configuration_utilsr   modeling_rope_utilsr	   r   r6   rR   __all__r"   r)   r(   <module>r]      sH   " / . 3 9W3& W3tc
% c
L-#! -#` >r)   