
    %	&h&                     `    d Z ddlmZ ddlmZ  ej
                  e      Z G d de      ZdgZ	y)zBamba model configuration   )PretrainedConfig)loggingc                   t     e Zd ZdZdZdgZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Zed        Z xZ	S )BambaConfiga9  
    This is the configuration class to store the configuration of a [`BambaModel`]. It is used to instantiate a
    BambaModel model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with defaults taken from [ibm-fms/Bamba-9.8b-2.2T-hf](https://huggingface.co/ibm-fms/Bamba-9.8b-2.2T-hf).

    The BambaModel is a hybrid [mamba2](https://github.com/state-spaces/mamba) architecture with SwiGLU.
    The checkpoints are  jointly trained by IBM, Princeton, and UIUC.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 128000):
            Vocabulary size of the Bamba model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`BambaModel`]
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the
            model has an output word embedding layer.
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 14336):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_key_value_heads (`int`, *optional*, defaults to 8):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        num_logits_to_keep (`int` or `None`, *optional*, defaults to 1):
            Number of prompt logits to calculate during generation. If `None`, all logits will be calculated. If an
            integer value, only last `num_logits_to_keep` logits will be calculated. Default is 1 because only the
            logits of the last prompt token are needed for generation. For long sequences, the logits for the entire
            sequence may use a lot of memory so, setting `num_logits_to_keep=1` will reduce memory footprint
            significantly.
        pad_token_id (`int`, *optional*, defaults to 0):
            The id of the padding token.
        bos_token_id (`int`, *optional*, defaults to 1):
            The id of the "beginning-of-sequence" token.
        eos_token_id (`int`, *optional*, defaults to 2):
            The id of the "end-of-sequence" token.
        max_position_embeddings (`int`, *optional*, defaults to 262144):
            Max cached sequence length for the model
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        attn_layer_indices (`list`, *optional*):
            Specifies the layer indices that will have full attention. Must contain values at most num_hidden_layers.
        mamba_n_heads (`int`, *optional*, defaults to 128):
            The number of mamba heads used in the v2 implementation.
        mamba_d_head (`int`, *optional*, defaults to `"auto"`):
            Head embedding dimension size
        mamba_n_groups (`int`, *optional*, defaults to 1):
            The number of the mamba groups used in the v2 implementation.
        mamba_d_state (`int`, *optional*, defaults to 256):
            The dimension the mamba state space latents
        mamba_d_conv (`int`, *optional*, defaults to 4):
            The size of the mamba convolution kernel
        mamba_expand (`int`, *optional*, defaults to 2):
            Expanding factor (relative to hidden_size) used to determine the mamba intermediate size
        mamba_chunk_size (`int`, *optional*, defaults to 256):
            The chunks in which to break the sequence when doing prefill/training
        mamba_conv_bias (`bool`, *optional*, defaults to `True`):
            Flag indicating whether or not to use bias in the convolution layer of the mamba mixer block.
        mamba_proj_bias (`bool`, *optional*, defaults to `False`):
            Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"]) of the mamba mixer block

    bambapast_key_valuesc                 6   || _         || _        || _        || _        || _        || _        || _        || _        d| _        d| _	        ||}|| _
        || _        |	| _        |
| _        || _        || _        || _        d| _        d | _        d| _        ||z  }||z  dk7  rt)        d      |dk(  r||z  }||z  |k7  rt)        d      || _        || _        || _        || _        || _        || _        || _        || _        || _        t=        | |  d	||||d| y )
NFg     @g      ?    z4mamba_n_heads must divide mamba_expand * hidden_sizeautozPThe dimensions for the Mamba head state do not match the model intermediate_size)pad_token_idbos_token_ideos_token_idtie_word_embeddings ) 
vocab_sizer   hidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsmax_position_embeddingsattention_dropoutattention_biasmlp_biasnum_key_value_heads
hidden_actinitializer_rangerms_norm_eps	use_cachenum_logits_to_keepattn_layer_indices
rope_thetarope_scalingpartial_rotary_factor
ValueErrormamba_n_headsmamba_d_headmamba_n_groupsmamba_d_statemamba_d_convmamba_expandmamba_chunk_sizemamba_conv_biasmamba_proj_biassuper__init__)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r%   r&   r'   r(   r)   r*   r+   r,   r-   kwargsmamba_intermediate	__class__s                                 /var/www/pru.catia.catastroantioquia-mas.com/valormas/lib/python3.12/site-packages/transformers/models/bamba/configuration_bamba.pyr/   zBambaConfig.__init__m   sp   > %#6 &!2!2#6 '>$!2# &"5#6 $!2(""4"4! %(")K7-2STT 6!->L-'+==opp*(,*(( 0.. 	
%%% 3		

 	
    c                     t        | j                        D cg c]   }| j                  r|| j                  v rdnd" c}S c c}w )N	attentionmamba)ranger   r    )r0   is     r4   layers_block_typezBambaConfig.layers_block_type   sJ     4112
 !33T=T=T8TK[bb
 	
 
s   %A )i  Fi   i 8      r<      silug{Gz?gh㈵>T   r
   r?      i   g        N   r   r?         r@   rB   TF)
__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferencer/   propertyr;   __classcell__)r3   s   @r4   r   r      s    Ob J#4"5 ! &9W
r 
 
r5   r   N)
rG   configuration_utilsr   utilsr   
get_loggerrD   loggerr   __all__r   r5   r4   <module>rQ      s=      3  
		H	%s
" s
l /r5   