
    %	&h?                     l    d dl mZ ddlmZ ddlmZ ddlmZmZ  G d de      Z	 G d	 d
e      Z
d
dgZy)    )Dict   )PretrainedConfig)rope_config_validation   )CONFIG_MAPPING
AutoConfigc            	            e Zd ZdZdZdgZddddddddZdgdgfd	d
gd	gfd	gd	gfdZdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 dde	de	de	de	f fdZ
 xZS )AriaTextConfiga>  
    This class handles the configuration for the text component of the Aria model.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the model of the Aria
    [rhymes-ai/Aria](https://huggingface.co/rhymes-ai/Aria) architecture.
    This class extends the LlamaConfig to include additional parameters specific to the Mixture of Experts (MoE) architecture.

    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`LlamaModel`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 4096):
            The size of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
            `num_attention_heads`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
            Llama 2 up to 4096, CodeLlama up to 16384.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*, defaults to 2):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 1):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 2):
            End of stream token id.
        pretraining_tp (`int`, *optional*, defaults to 1):
            Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
            document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
            understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
            results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'llama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
        attention_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        mlp_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
        head_dim (`int`, *optional*):
            The attention head dimension. If None, it will default to hidden_size // num_heads
        moe_num_experts (`int`, *optional*, defaults to 8):
            The number of experts in the MoE layer.
        moe_topk (`int`, *optional*, defaults to 2):
            The number of top experts to route to for each token.
        moe_num_shared_experts (`int`, *optional*, defaults to 2):
            The number of shared experts.
    	aria_textpast_key_valuescolwiserowwise)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.mlp.gate_projzlayers.*.mlp.up_projzlayers.*.mlp.down_proj	input_idsinputs_embedshidden_statesattention_mask)embed_tokenslayersnormtext_configintermediate_sizemoe_num_expertsmoe_topkmoe_num_shared_expertsc                    t        |   d||||d| || _        || _        || _        || _        || _        || _        ||}|| _        || _	        |	| _
        |
| _        || _        || _        || _        || _        || _        || _        || _        ||n| j                  | j                  z  | _        | j                  *d| j                  v r| j                  d   | j                  d<   t)        |        || _        || _        || _        y )N)pad_token_idbos_token_ideos_token_idtie_word_embeddingstype	rope_type )super__init__
vocab_sizemax_position_embeddingshidden_sizer   num_hidden_layersnum_attention_headsnum_key_value_heads
hidden_actinitializer_rangerms_norm_epspretraining_tp	use_cache
rope_thetarope_scalingattention_biasattention_dropoutmlp_biashead_dimr   r   r   r   )selfr&   r(   r   r)   r*   r+   r,   r'   r-   r.   r0   r   r   r   r/   r    r1   r2   r3   r4   r5   r6   r   r   r   kwargs	__class__s                              /var/www/pru.catia.catastroantioquia-mas.com/valormas/lib/python3.12/site-packages/transformers/models/aria/configuration_aria.pyr%   zAriaTextConfig.__init__   s5   : 	 	
%%% 3		

 	
 %'>$&!2!2#6  &"5#6 $!2(,"$(,!2 $,$8d>N>NRVRjRj>j (Vt7H7H-H-1->->v-FDk*t$. &<#    )i }     r<       r=   Nsilui   {Gz?gư>Tr      r   r@   Fg     @NFg        FN   r   r   )__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferencebase_model_tp_planbase_model_pp_planbase_config_keyintr%   __classcell__r9   s   @r:   r   r      s    hT J#4"5 &/%.%.%."+ )"+ &(9:#%568IJ!"_$56
 $O !%  $! &'5B= 	B=0 1B=2 3B=4 !$5B= B=r;   r   c                   T     e Zd ZdZdZeedZ	 	 	 	 	 	 d
dedede	dede
f
 fd	Z xZS )
AriaConfiga  
    This class handles the configuration for both vision and text components of the Aria model,
    as well as additional parameters for image token handling and projector mapping.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the model of the Aria
    [rhymes-ai/Aria](https://huggingface.co/rhymes-ai/Aria) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vision_config (`AriaVisionConfig` or `dict`, *optional*):
            Configuration for the vision component.
        vision_feature_layer (`int`, *optional*, defaults to -1):
            The index of the layer to select the vision feature.
        text_config (`AriaTextConfig` or `dict`, *optional*):
            Configuration for the text component.
        projector_patch_to_query_dict (`dict`, *optional*):
            Mapping of patch sizes to query dimensions.
        image_token_index (`int`, *optional*, defaults to 9):
            Index used to represent image tokens.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated normal initializer for initializing all weight matrices.

    Attributes:
        model_type (`str`):
            Type of the model, set to `"aria"`.
        image_token_index (`int`):
            Index used to represent image tokens.
        projector_patch_to_query_dict (`dict`):
            Mapping of patch sizes to query dimensions.
        vision_config (`AriaVisionConfig`):
            Configuration for the vision component.
        text_config (`AriaTextConfig`):
            Configuration for the text component.
    aria)r   vision_configvision_feature_layerr   projector_patch_to_query_dictimage_token_indexr-   c                    || _         |ddd}|j                         D 	ci c]  \  }}	t        |      t        |	       c}	}| _        t	        | j                  j                               | _        || _        t        |t              rd|d<   t        |d      di |}n|t        d          }|| _        || _        t        |t              rd|v rt        di |}n|
t               }|| _        t        
| @  di | y c c}	}w )N      )i  i$  idefics3_visionrF   r#   )rT   itemsrK   rS   maxvalues'max_value_projector_patch_to_query_dictrR   
isinstancedictr   rQ   r-   r   r   r$   r%   )r7   rQ   rR   r   rS   rT   r-   r8   kvr9   s             r:   r%   zAriaConfig.__init__  s    "3 )0-) JgIlIlIn-oAc!fc!fn-o*7:4;];];d;d;f7g4$8!mT**;M,'*=+FGX-XM"*+<=?M*!2k4(\[-H(7;7K (*K&"6"' .ps   D)NNN	   r?   )rB   rC   rD   rE   rF   r   r	   sub_configsrK   r   floatr%   rL   rM   s   @r:   rO   rO      sj    "H J"0:NK $&&*.2!"#'&# "&# $	&#
 (,&# &# !&# &#r;   rO   N)typingr   configuration_utilsr   modeling_rope_utilsr   autor   r	   r   rO   __all__r#   r;   r:   <module>rj      s@   *  3 9 -@=% @=FN#! N#b )
*r;   