
    %	&h                         d Z ddlmZmZ ddlmZ ddlmZmZm	Z	 ddl
mZmZmZ ddlmZ  G d d	ed
      Z G d de      ZdgZy)z(
Image/Text processor class for AltCLIP
    )ListUnion   )
ImageInput)ProcessingKwargsProcessorMixinUnpack)BatchEncodingPreTokenizedInput	TextInput)deprecate_kwargc                       e Zd Zi Zy)AltClipProcessorKwargsN)__name__
__module____qualname__	_defaults     /var/www/pru.catia.catastroantioquia-mas.com/valormas/lib/python3.12/site-packages/transformers/models/altclip/processing_altclip.pyr   r      s    Ir   r   F)totalc            
            e Zd ZdZddgZdZdZ eddd      d fd		       Z	 	 	 	 dd
e	de
eeee   ee   f   dee   defdZd Zd Zed        Z xZS )AltCLIPProcessoraD  
    Constructs a AltCLIP processor which wraps a CLIP image processor and a XLM-Roberta tokenizer into a single
    processor.

    [`AltCLIPProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`XLMRobertaTokenizerFast`]. See
    the [`~AltCLIPProcessor.__call__`] and [`~AltCLIPProcessor.decode`] for more information.

    Args:
        image_processor ([`CLIPImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`XLMRobertaTokenizerFast`], *optional*):
            The tokenizer is a required input.
    image_processor	tokenizer)CLIPImageProcessorCLIPImageProcessorFast)XLMRobertaTokenizerXLMRobertaTokenizerFastfeature_extractorz5.0.0)old_nameversionnew_namec                 Z    |t        d      |t        d      t        | 	  ||       y )Nz)You need to specify an `image_processor`.z"You need to specify a `tokenizer`.)
ValueErrorsuper__init__)selfr   r   	__class__s      r   r'   zAltCLIPProcessor.__init__2   s6    "HIIABB)4r   imagestextkwargsreturnc                    ||t        d      ||t        d       | j                  t        fd| j                  j                  i|}| | j                  |fi |d   }| | j
                  |fi |d   }d|d   v r|d   j                  dd      }	||j                  d<   |S |S t        t        d
i 		      S )a  
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to XLMRobertaTokenizerFast's [`~XLMRobertaTokenizerFast.__call__`] if `text` is not
        `None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
        CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
        of the above two methods for more information.

        Args:

            images (`ImageInput`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            text (`TextInput`, `PreTokenizedInput`, `List[TextInput]`, `List[PreTokenizedInput]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:
                    - `'tf'`: Return TensorFlow `tf.constant` objects.
                    - `'pt'`: Return PyTorch `torch.Tensor` objects.
                    - `'np'`: Return NumPy `np.ndarray` objects.
                    - `'jax'`: Return JAX `jnp.ndarray` objects.
        Returns:
            [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
        Nz'You must specify either text or images.tokenizer_init_kwargstext_kwargsimages_kwargsreturn_tensorscommon_kwargspixel_values)datatensor_typer   )
r%   _merge_kwargsr   r   init_kwargsr   popr4   r
   dict)
r(   r*   r+   audiovideosr,   output_kwargsencodingimage_featuresr2   s
             r   __call__zAltCLIPProcessor.__call__;   s   P <FNFGG<FNFGG***"
"&.."<"<
 
 %t~~dKmM.JKH1T11&[M/<Z[N }_==*?;??@PRVWN 2'5'B'BH^$OO d&<^&<.YYr   c                 :     | j                   j                  |i |S )z
        This method forwards all its arguments to XLMRobertaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`].
        Please refer to the docstring of this method for more information.
        )r   batch_decoder(   argsr,   s      r   rB   zAltCLIPProcessor.batch_decode   s     
 +t~~**D;F;;r   c                 :     | j                   j                  |i |S )z
        This method forwards all its arguments to XLMRobertaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please
        refer to the docstring of this method for more information.
        )r   decoderC   s      r   rF   zAltCLIPProcessor.decode   s     
 %t~~$$d5f55r   c                     | j                   j                  }| j                  j                  }t        t        j                  ||z               S )N)r   model_input_namesr   listr:   fromkeys)r(   tokenizer_input_namesimage_processor_input_namess      r   rH   z"AltCLIPProcessor.model_input_names   s?     $ @ @&*&:&:&L&L#DMM"7:U"UVWWr   )NN)NNNN)r   r   r   __doc__
attributesimage_processor_classtokenizer_classr   r'   r   r   r   r   r   r	   r   r
   r@   rB   rF   propertyrH   __classcell__)r)   s   @r   r   r      s     $[1JLHO17M^_5 `5 "^bBZBZ I0$y/4HYCZZ[BZ /0BZ 
BZH<6 X Xr   r   N)rM   typingr   r   image_utilsr   processing_utilsr   r   r	   tokenization_utils_baser
   r   r   utils.deprecationr   r   r   __all__r   r   r   <module>rY      sK     % H H R R 0-U rX~ rXj 
r   