
    %	&h$J                         d Z ddlmZ ddlmZ  ej
                  e      Z G d de      Z G d de      Z	 G d d	e      Z
g d
Zy)zAltCLIP model configuration   )PretrainedConfig)loggingc                   N     e Zd ZdZdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )AltCLIPTextConfiga  
    This is the configuration class to store the configuration of a [`AltCLIPTextModel`]. It is used to instantiate a
    AltCLIP text model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the AltCLIP
    [BAAI/AltCLIP](https://huggingface.co/BAAI/AltCLIP) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 250002):
            Vocabulary size of the AltCLIP model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`AltCLIPTextModel`].
        hidden_size (`int`, *optional*, defaults to 1024):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 24):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 4096):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 514):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 1):
            The vocabulary size of the `token_type_ids` passed when calling [`AltCLIPTextModel`]
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float`, *optional*, defaults to 0.02):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        pad_token_id (`int`, *optional*, defaults to 1): The id of the *padding* token.
        bos_token_id (`int`, *optional*, defaults to 0): The id of the *beginning-of-sequence* token.
        eos_token_id (`Union[int, List[int]]`, *optional*, defaults to 2):
            The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
        position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
            Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
            positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
            [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
            For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
            with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        project_dim (`int`, *optional*, defaults to 768):
            The dimensions of the teacher model before the mapping layer.

    Examples:

    ```python
    >>> from transformers import AltCLIPTextModel, AltCLIPTextConfig

    >>> # Initializing a AltCLIPTextConfig with BAAI/AltCLIP style configuration
    >>> configuration = AltCLIPTextConfig()

    >>> # Initializing a AltCLIPTextModel (with random weights) from the BAAI/AltCLIP style configuration
    >>> model = AltCLIPTextModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```altclip_text_modelc                    t        |   d|||d| || _        || _        || _        || _        || _        || _        || _        || _	        |	| _
        |
| _        || _        || _        || _        || _        || _        || _        y )N)pad_token_idbos_token_ideos_token_id )super__init__
vocab_sizehidden_sizenum_hidden_layersnum_attention_heads
hidden_actintermediate_sizehidden_dropout_probattention_probs_dropout_probmax_position_embeddingstype_vocab_sizeinitializer_rangeinitializer_factorlayer_norm_epsposition_embedding_type	use_cacheproject_dim)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r	   r
   r   r   r   r   kwargs	__class__s                        /var/www/pru.catia.catastroantioquia-mas.com/valormas/lib/python3.12/site-packages/transformers/models/altclip/configuration_altclip.pyr   zAltCLIPTextConfig.__init__c   s    . 	sl\hslrs$&!2#6 $!2#6 ,H)'>$.!2"4,'>$"&    )i i         i   gelu皙?r'   i     {Gz?r)   h㈵>r(          absoluteT   )__name__
__module____qualname____doc__
model_typer   __classcell__r!   s   @r"   r   r      sV    FP &J %( # *)(' ('r#   r   c                   F     e Zd ZdZdZdZ	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )AltCLIPVisionConfiga  
    This is the configuration class to store the configuration of a [`AltCLIPModel`]. It is used to instantiate an
    AltCLIP model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the AltCLIP
    [BAAI/AltCLIP](https://huggingface.co/BAAI/AltCLIP) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        projection_dim (`int`, *optional*, defaults to 512):
            Dimensionality of text and vision projection layers.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 32):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).

    Example:

    ```python
    >>> from transformers import AltCLIPVisionConfig, AltCLIPVisionModel

    >>> # Initializing a AltCLIPVisionConfig with BAAI/AltCLIP style configuration
    >>> configuration = AltCLIPVisionConfig()

    >>> # Initializing a AltCLIPVisionModel (with random weights) from the BAAI/AltCLIP style configuration
    >>> model = AltCLIPVisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```altclip_vision_modelvision_configc                     t        |   di | || _        || _        || _        || _        || _        || _        || _        || _	        || _
        || _        || _        |
| _        |	| _        y )Nr   )r   r   r   r   projection_dimr   r   num_channels
patch_size
image_sizer   r   attention_dropoutr   r   )r   r   r   r;   r   r   r<   r>   r=   r   r   r?   r   r   r    r!   s                  r"   r   zAltCLIPVisionConfig.__init__   sz    " 	"6"&!2,!2#6 ($$!2"4!2,$r#   )r.   i   i      r@   r          
quick_gelur*   g        r)         ?)r/   r0   r1   r2   r3   base_config_keyr   r4   r5   s   @r"   r7   r7      sH    5n (J%O % %r#   r7   c                   N     e Zd ZdZdZeedZ	 d fd	Ze	dedefd       Z
 xZS )	AltCLIPConfiga  
    This is the configuration class to store the configuration of a [`AltCLIPModel`]. It is used to instantiate an
    AltCLIP model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the AltCLIP
    [BAAI/AltCLIP](https://huggingface.co/BAAI/AltCLIP) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`AltCLIPTextConfig`].
        vision_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`AltCLIPVisionConfig`].
        projection_dim (`int`, *optional*, defaults to 768):
            Dimensionality of text and vision projection layers.
        logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
            The initial value of the *logit_scale* parameter. Default is used as per the original CLIP implementation.
        kwargs (*optional*):
            Dictionary of keyword arguments.

    Example:

    ```python
    >>> from transformers import AltCLIPConfig, AltCLIPModel

    >>> # Initializing a AltCLIPConfig with BAAI/AltCLIP style configuration
    >>> configuration = AltCLIPConfig()

    >>> # Initializing a AltCLIPModel (with random weights) from the BAAI/AltCLIP style configuration
    >>> model = AltCLIPModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config

    >>> # We can also initialize a AltCLIPConfig from a AltCLIPTextConfig and a AltCLIPVisionConfig

    >>> # Initializing a AltCLIPText and AltCLIPVision configuration
    >>> config_text = AltCLIPTextConfig()
    >>> config_vision = AltCLIPVisionConfig()

    >>> config = AltCLIPConfig.from_text_vision_configs(config_text, config_vision)
    ```altcliptext_configr9   c                    |j                  dd       }|j                  dd       }t        |   di | ||i }t        di |j	                         }|j                         D ]A  \  }	}
|	|v s|
||	   k7  s|	dvs|	|v r
d|	 d|	 d}nd|	 d}t        j                  |       C |j                  |       ||i }t        di |j	                         }d	|v r3|d	   j                         D 	
ci c]  \  }	}
t        |	      |
 c}
}	|d	<   |j                         D ]A  \  }	}
|	|v s|
||	   k7  s|	dvs|	|v r
d|	 d
|	 d}nd|	 d}t        j                  |       C |j                  |       |i }t        j                  d       |i }t        j                  d       t        di || _        t        di || _        || _        || _        d| _        y c c}
}	w )Ntext_config_dictvision_config_dict)transformers_version`zp` is found in both `text_config_dict` and `text_config` but with different values. The value `text_config_dict["z"]` will be used instead.zm`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The value `text_config["z"]` will be overridden.id2labelzv` is found in both `vision_config_dict` and `vision_config` but with different values. The value `vision_config_dict["zs`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. The value `vision_config["zR`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.zV`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.rD   r   )popr   r   r   to_dictitemsloggerinfoupdater7   strrJ   r9   r;   logit_scale_init_valuer   )r   rJ   r9   r;   rX   r    rL   rM   _text_config_dictkeyvaluemessage_vision_config_dictr!   s                r"   r   zAltCLIPConfig.__init__  sp    "::&8$?#ZZ(<dC"6"
 '"  !2 E4D E M M O 0557 )
U+%%;s3C*CSkHk..u %<<?5@Y[  336%7NP   KK()" 01)$ " #6"K8J"K"S"S"U006I*6U6[6[6]3(2UCHeO3#J/
 2779 )
U-'E]35G,GCWoLo00u %FFIUJce  99<=TV   KK()"   !45KKKlm MKKpq,;{;0A=A,&<#"%K3s   2GrJ   r9   c                 P     | d|j                         |j                         d|S )z
        Instantiate a [`AltCLIPConfig`] (or a derived class) from altclip text model configuration and altclip vision
        model configuration.

        Returns:
            [`AltCLIPConfig`]: An instance of a configuration object
        rI   r   )rR   )clsrJ   r9   r    s       r"   from_text_vision_configsz&AltCLIPConfig.from_text_vision_configss  s,     f{224MDYDYD[f_effr#   )NNr.   g/L
F@)r/   r0   r1   r2   r3   r   r7   sub_configsr   classmethodr`   r4   r5   s   @r"   rG   rG      sQ    *X J"3FYZK `fV&p 	g3D 	gUh 	g 	gr#   rG   )r   r7   rG   N)r2   configuration_utilsr   utilsr   
get_loggerr/   rT   r   r7   rG   __all__r   r#   r"   <module>rg      s^    " 3  
		H	%s'( s'lZ%* Z%zRg$ Rgj Hr#   